Languages all the
way down

Alexander Gryzlov,
IMDEA Software Institute

Celonis, Madrid, 19/10/2022

Intro

e Research software engineer

e Write proofs for imperative (concurrent) algorithms

e Programs that assume a global storage and
manipulate pointers to it

List reversal

done «— null;

while (¢ # null) do {
k<—1(z+1);
1+ 1 := done;
done « 1;

1 — k;

} o

done i

4

done i

List reversal

e Written in some "midlevel" language

e You can compile it to machine code

e You can specify it with some
abstraction

done < null;

Compilation

.LBB2_1:

while (7 # null) do {

k<—1(z+1);

1+ 1 := done;

done « 1;
1 — k;

cmp
je

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

jmp

gword ptr [rbp
. LBB2_3

rax, qword ptr
rax, qword ptr
gword ptr [rbp
rcx, qword ptr
rax, qword ptr
gword ptr [rax
rax, qword ptr
gword ptr [rbp
rax, gword ptr
gword ptr [rbp
. LBB2_1

- 321, ©

[rbp - 32]
[rax + 8]

- 16]/

rax

[rbp - 24]
[rbp - 32]

+ 8],

rcx

[rbp - 32]

- 24],

rax

[rbp - 16]

- 32],

rax

Specification

reverse .= list A := nil
done < null; | :: of A & list A
while (¢ # null) do {
ko« (i +1); rev nil = nil
rev X::Xs = rev Xs ++ X::nil

1+ 1 := done;

done «— 1: . . _
’ {is_list 1 1}

reverse
} {is_1list done (rev 1)}

1 «— k;

Language stack

Interaction between machine and human

The gap is large, so we have a series of
languages

Programming is about navigating this stack
Can computers also help with this navigation?

Me and languages

e A linguist father
e Got a computer in early 90s for text processing

e "Computer obtains a mind", 1985-1990

e "Goedel, Escher, Bach", 1979

KOMIMbIOTEP
OBPETAET PA3YM

UaparenbctBo <Mup»

Po6OT yuuTCA Ha npumepax

PasMHOXXeHue
BapuaHToB

Tipisiiaki 5 Mepapxusx 06OBUICHNT — OMHA 13 COCTARTSNO-
WX HCXOMMLIX SHARHH POGOTA (6HU3Y) — CTYXET CHPbEM
IS 3anaNH OGYNEHINS, ONPEACTISS XADAKTEDHCTHKH, KOTOPHC,
1O Beckt RIAMMOCTH, HMEIOT OTHOWERHE K fieny. Tax kax po-
60T He BCTPETHI € Hi OIHOTO APAKOKA H TAK KAK eMy Hii-
4ero sapaiiee He BECTHO O MPH3HAKEX 10OPHIX ADAKOHOB, OH
CUNTACT BEIO ITY MHPOPMALHIO OMKAKOBO CYLIECTBEHHOM A7
onMcaiA £0GPOTO ApaKoHa.

Taxum oBpasons, oBoblierus, KoTopuie po6oT Kemaer Ha
9TOM ITae, — NOHATHA, HCTIOTEIYCMBC B KaMCCTEC THIIO-

Te3, — OXEQTHBAIOT BCE BOIMOKHEIE KOMOHHAUM npHINA-
KOB — GOPMBI, LBeTa, MecTa OOMTAHHS. ITH KOMOMHALMH
MENAIOTCA OT CaMbiX OGIIUIX 10 MPEACTHHO KOMKpeTHuEX. Ha
nprmep, obobuerne «wnobasm dopma, MmoGofi user, noboe Me-
€0 ObHTAAS OGBEIMACT BCX DOMOKILIX APAKOHOB, TOT
i KaK OGOBLLEHHE «TONCTAR, TeMHAM, HeGecHwl» Bl eIACT
3 X HEGOMLIYIO FPYRNY, & OGOBIIEHHE (MeeRHIHMH, e~
Thil, pewNOfi» — ee. MELIYIC

Opiaxo ve nee Apakonss £0Gpwe. HToOM BHOTHNTS
CBOIO YHKUMOHATEHYIO 32 — HabpaTs 3071070 H Hanon-
WHT MM TODUIOK Ha JQJIBHEN KOHUE PAIYIH, — POGOT A0n-
Keil GLCTDO HAYWHTLCH OTIHYATS OGP APAKOHOB O KAl
suix, BCTPETHB MEPROTO e ADAKOH, O HASHET NPOCCHRATS
STy ropy HGODNAW MEPE) CHTO MIIVKTHBHMX Dac
cymaeni.

Ak

Pulitzer Prize-Winner

Witl

Me and languages

e Perceptrons, expert systems, semantics, learning
e Quines, fixpoints, self-modifying code
e Went to get a CS degree in mid 2000s

input to a program = string in a new language
the program itself = its interpreter

Language-Oriented Programming

Early work experience

e C/C++/Java (also some Smalltalk)

e Always about manipulating state ("mid-stack")

e | eaking abstractions: segfaults, null pointers, bizarre
errors

e Spent a few years playing detective

done «— null;

while (7 # null) do {
k< 1(i+1);
1+ 1 := done;
done « i;

1 «— k;

Early work experience

Nice theory, rough practice

The computer is not a very coherent dialogue partner
"This is just bit shuffling"

Need to look for languages somewhere else

Biology

e Can be seen as "language
stacks" incarnate
e Biosemiotics, code, signalling

PROTEIN STRUCTURE

>
g

Systems biology

Lin et al., Journal of Biological Engineering [2018]
"Synthesis of control unit for future biocomputer”

-“‘\ a
RNAp

(b) i | %[mmm| RBS Gl:.

= ‘\‘\\ RNA
u X w protein
I | o, |0.i= | (Prom oter l RBS Gene

|

-)
() ?Skz-;\“
el s ~
s L Al

Fig. 2 Structure of the fundamental genetic logic gates. a NOT gate b AND gate ¢ NAND gate. Figure a, b, and c represent the genetic
sequences for expressing the logic functions, respectively

https://jbioleng.biomedcentral.com/counter/pdf/10.1186/s13036-018-0109-4.pdf
https://jbioleng.biomedcentral.com/counter/pdf/10.1186/s13036-018-0109-4.pdf

Functional programming

e Played with Lisp before

e Started getting interested in typed functional
languages like OCaml and Scala (early 20105s)

e Began with parsers and data pipelines

e Bioperl, Biocami, ...

Bioinformatics

Applied to a PhD in Plant Systems Biology

Studied for 2.5 years before dropping out

More interested in quantitative effects than in big
picture

"Computational glue" pipelines (Perl, Fortran, MATLAB,
etc), ad-hoc write-and-forget scripts

Even less trustworthy!

Script troubles

Characterization of Leptazolines A—D, Polar Oxazolines from the
Cyanobacterium Leptolyngbya sp., Reveals a Glitch with the
“Willoughby—Hoye” Scripts for Calculating NMR Chemical Shifts

Jayanti Bhandari Neupane, Ram P. Neupane,” Yuheng Luo, Wesley Y. Yoshida, Rui Sun,
and Philip G. Williams*

Department of Chemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States

e.g., this paper from 2019 suggests 150+ papers could
have wrong results:

"The error is the result of a simple file sorting problem. On
operating systems without default file name sorting, the

script fails to match the files containing a conformer’s free
energy with its chemical shift - leading to an overall wrong

value."

http://www2.hawaii.edu/~ruisun/sun_pub/Python_OL_19.pdf

Data engineering

Went back to the industry, wishing for more rigor
R&D in ad-tech

Recommender engines, distributed data pipelines
Started fully embracing FP (mid 2010s)

"Stats and monads" department

Specs and types
list A := nil
| :: of A & list A

rev nil = nil
rev X::Xs rev xs ++ x::nil

FP is executable specs:

def rev[A] : List[A] => List[A] = {
case Nil => Nil
case (X::xSs) => rev(xs) ++ List(x)

}

Mohnads & DSLs

Embrace Language-Oriented Programming, use
mini-languages

Need for meta-language constructs

Monads model sequential composition

cause => effect[result]

In CS computation is thought of as directed
E.g. multiplying numbers vs factoring primes

Scalability

e Trustworthiness is really useful for a
foundation

e Performance will suffer

e Scale horizontally => parallelism &
concurrency

e Pandora's box: all about fine-grained
communication

e No longer interacting with computer 1-1,
you're outnumbered

e Sequentiality also starts leaking

Break up monads

Applicatives

def pure[A](a: A): F[A]
def apply[A, B](f: F[A => B]): F[A] => F[B]

Arrows
Arrow[F[_, _1]]

def 1ift[A,B](f: A => B): F[A,B]
def dimap[A,B,C,D](fab: F[A,B])
(f: C=>A)(g: B=>D): F[C,D]
def second[A,B,C]
(fa: F[A,B]): F[(C,A),(C,B)]
def split[A,B,C,D]
(f: F[A,B], g9: F[C,D]): F[(A,C),(B,D)]

Visual programming

f

h

_—
E

Categorical cybernetics

Capucci, Gavranovic, Hedges, Rischel [2021]

"Towards foundations of categorical cybernetics”

i oo e
gdyg Sy
Er EP Ra I
R R* ‘
R= 4 Bx d \ \
R
d; JRx d

dx

—dx

Figure 7: A generative adversarial network as a closed system.

https://arxiv.org/abs/2105.06332
https://arxiv.org/abs/2105.06332

Build on monads

We wanted expressive declarative DSLs

FP - higher-order functions + higher-order types
Abstracts and hides some of the complexity

The computer can have coherent dialogue but can be
very excrutiating

Logic programming

e A second side of declarative is logic programming

e Solving as the default mode of computation

e Norvig's Corollary to Greenspun's Tenth Law of
Programming: "Any sufficiently complicated LISP
program is going to contain a slow implementation of
half of Prolog"

e Filling the gaps: implicits

Proof engineering

Dependent types are a powerful metalanguage
Solving becomes undecidable, manual proofs
Programming -> constructive math & logic
Equality, ordering, choice, finiteness
Countability ~ serialization

Al vs |A

Thinking is scarce

Moshe Vardi: Fast and Slow Thinking
Expressive specs mean more powerful tools
Typechecker feedback loop

An interesting dialogue with machine

https://www.youtube.com/watch?v=K-wfD5SKaLc

List reversal in Coq/HTT

Demo!

Contacts

https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://github.com/clayrat/
https://twitter.com/clayrat/

https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://github.com/clayrat/
https://twitter.com/clayrat/

