
Languages all the
way down

Alexander Gryzlov,
IMDEA Software Institute

Celonis, Madrid, 19/10/2022

Intro

Research software engineer
Write proofs for imperative (concurrent) algorithms
Programs that assume a global storage and
manipulate pointers to it

List reversal

List reversal

Written in some "midlevel" language
You can compile it to machine code
You can specify it with some
abstraction

Compilation

.LBB2_1:

 cmp qword ptr [rbp - 32], 0

 je .LBB2_3

 mov rax, qword ptr [rbp - 32]

 mov rax, qword ptr [rax + 8]

 mov qword ptr [rbp - 16], rax

 mov rcx, qword ptr [rbp - 24]

 mov rax, qword ptr [rbp - 32]

 mov qword ptr [rax + 8], rcx

 mov rax, qword ptr [rbp - 32]

 mov qword ptr [rbp - 24], rax

 mov rax, qword ptr [rbp - 16]

 mov qword ptr [rbp - 32], rax

 jmp .LBB2_1

Specification

reverse := list A := nil

 | :: of A & list A

rev nil = nil

rev x::xs = rev xs ++ x::nil

{is_list i l}

reverse

{is_list done (rev l)}

Language stack

Interaction between machine and human
The gap is large, so we have a series of
languages
Programming is about navigating this stack
Can computers also help with this navigation?

Me and languages
A linguist father
Got a computer in early 90s for text processing
"Computer obtains a mind", 1985-1990
"Goedel, Escher, Bach", 1979

Me and languages

Perceptrons, expert systems, semantics, learning
Quines, fixpoints, self-modifying code
Went to get a CS degree in mid 2000s

input to a program = string in a new language

the program itself = its interpreter

Language-Oriented Programming

Early work experience

C/C++/Java (also some Smalltalk)
Always about manipulating state ("mid-stack")
Leaking abstractions: segfaults, null pointers, bizarre
errors
Spent a few years playing detective

Early work experience

Nice theory, rough practice
The computer is not a very coherent dialogue partner
"This is just bit shuffling"
Need to look for languages somewhere else

Biology

Can be seen as "language
stacks" incarnate
Biosemiotics, code, signalling

Systems biology

Lin et al., Journal of Biological Engineering [2018]
"Synthesis of control unit for future biocomputer"

https://jbioleng.biomedcentral.com/counter/pdf/10.1186/s13036-018-0109-4.pdf
https://jbioleng.biomedcentral.com/counter/pdf/10.1186/s13036-018-0109-4.pdf

Functional programming

Played with Lisp before
Started getting interested in typed functional
languages like OCaml and Scala (early 2010s)
Began with parsers and data pipelines
Bioperl, Biocaml, ...

Bioinformatics

Applied to a PhD in Plant Systems Biology
Studied for 2.5 years before dropping out
More interested in quantitative effects than in big
picture
"Computational glue" pipelines (Perl, Fortran, MATLAB,
etc), ad-hoc write-and-forget scripts
Even less trustworthy!

Script troubles

e.g., from 2019 suggests 150+ papers could
have wrong results:

"The error is the result of a simple file sorting problem. On
operating systems without default file name sorting, the
script fails to match the files containing a conformer’s free
energy with its chemical shift – leading to an overall wrong
value."

this paper

http://www2.hawaii.edu/~ruisun/sun_pub/Python_OL_19.pdf

Data engineering

Went back to the industry, wishing for more rigor
R&D in ad-tech
Recommender engines, distributed data pipelines
Started fully embracing FP (mid 2010s)
"Stats and monads" department

Specs and types

list A := nil

 | :: of A & list A

rev nil = nil

rev x::xs = rev xs ++ x::nil

def rev[A] : List[A] => List[A] = {

 case Nil => Nil

 case (x::xs) => rev(xs) ++ List(x)

}

FP is executable specs:

Monads & DSLs

Embrace Language-Oriented Programming, use
mini-languages
Need for meta-language constructs
Monads model sequential composition

In CS computation is thought of as directed
E.g. multiplying numbers vs factoring primes

cause => effect[result]

Scalability

Trustworthiness is really useful for a
foundation
Performance will suffer
Scale horizontally => parallelism &
concurrency
Pandora's box: all about fine-grained
communication
No longer interacting with computer 1-1,
you're outnumbered
Sequentiality also starts leaking

Break up monads
Applicatives

def pure[A](a: A): F[A]

def apply[A, B](f: F[A => B]): F[A] => F[B]

Arrows

Arrow[F[_, _]]

def lift[A,B](f: A => B): F[A,B]

def dimap[A,B,C,D](fab: F[A,B])

 (f: C=>A)(g: B=>D): F[C,D]

def second[A,B,C]

 (fa: F[A,B]): F[(C,A),(C,B)]

def split[A,B,C,D]

 (f: F[A,B], g: F[C,D]): F[(A,C),(B,D)]

Visual programming

Categorical cybernetics
Capucci, Gavranovic, Hedges, Rischel [2021]

"Towards foundations of categorical cybernetics"

https://arxiv.org/abs/2105.06332
https://arxiv.org/abs/2105.06332

Build on monads

We wanted expressive declarative DSLs
FP - higher-order functions + higher-order types
Abstracts and hides some of the complexity
The computer can have coherent dialogue but can be
very excrutiating

Logic programming

A second side of declarative is logic programming
Solving as the default mode of computation
Norvig's Corollary to Greenspun's Tenth Law of
Programming: "Any sufficiently complicated LISP
program is going to contain a slow implementation of
half of Prolog"
Filling the gaps: implicits

Proof engineering

Dependent types are a powerful metalanguage
Solving becomes undecidable, manual proofs
Programming -> constructive math & logic
Equality, ordering, choice, finiteness
Countability ~ serialization

AI vs IA

Thinking is scarce

Expressive specs mean more powerful tools
Typechecker feedback loop
An interesting dialogue with machine

Moshe Vardi: Fast and Slow Thinking

https://www.youtube.com/watch?v=K-wfD5SKaLc

List reversal in Coq/HTT

Demo!

Contacts

https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://github.com/clayrat/
https://twitter.com/clayrat/

https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://github.com/clayrat/
https://twitter.com/clayrat/

