
Programming and

Proving with Guarded

Recursion

Alexander Gryzlov

Research progammer

IMDEA Software Institute

PSSV-2023 workshop, 03/11/2023

1

Outline

• The history and concept of guarded recursion

• Stream programming

• Partiality monad

• Bird's algorithm

• Non-strictly positive datatypes

2

What is guarded recursion?

• A flavour of provability modality

• 1933 - Gödel's analysis of S4

• 1950s - Löb's axiom: □(□A → A) → □A

• 1960s - GL system

• 1970s - intuitionistic systems, fixed points

• 2000s - links to formal semantics and category theory

3

Nakano's approximation

• Nakano, [2000] "A modality for recursion"

• Initially denoted ⏺

• Continued by many authors, most notably:

• Atkey-McBride'2013

• A series of papers by Birkedal and coauthors in 2010s

• Nowadays symbolized by a right triangle ▷

• Viewed as a special type constructor in a type system

4

A thunk calculus

• ▷A is "A, but available one step later"

• Essentially a thunk (delayed computation)

• Structure of an applicative
•

•

pure : A → ▷A

ap : ▷(A → B) → ▷A → ▷B

5

Ticked type theory

• We'll use Agda proof assistant for interactive examples

• Guarded modality is encoded as a function from Ticks

of a modal type 𝕋

• A proof of an elapsed time step

• Can encode next and ap

6

Ticked type theory

• Context variables right of a tick are available one

step later

• Applying a tick to a term "consumes" it

• Prevents the temporal structure from collapsing
•

• Not a monad

flatten : ▹ ▹ A → ▹ A

7

Clocked type theory

• We can work "inside of" thunks but not remove

them

• Delayedness never decreases

• Weaker than proper conduction

• Can be extended by a constant ☐ modality or clock

variables to allow forcing "completed" thunks

8

Functorial laws

• We can derive a functorial action
•

• All the laws hold definitionally (by symbolic computation)

▹map : (A → B) → ▹ A → ▹ B

9

Cubical interaction

• Technically we're using the cubical mode of Agda

• No higher equalities / quotients / univalence

• Equality is encoded as a function from a continuous

interval 𝕀

• The interval is allowed to "time-travel"

• We can reason about the future in the present

10

Guarded recursion

• We can delay and combine computations, what now?

• Terminating → Productive

• Every recursive call is "guarded" by a thunk, giving back

control

• Infinite / streaming computations, servers, OSs

11

Guarded recursion

• (Strong) Löb's axiom
•

• A form of Y-combinator

• Postulated definition, unfolding made propositional

• Can be safely erased down to the usual fixpoint

fix: (▹ A → A) → A

12

Streams

• Classical infinite structure

• An inductive list with a delayed tail and no empty case

• Unique fixed point

• Mixing constructors and destructors

13

Stream reasoning

• Constant streams

• Unfolding the definition

• "Body" pattern

14

Stream reasoning

• Mapping streams

• Step inconsistency with induction

• Guarded induction

• Unfold → Apply → Fold pattern

15

Stream predicates

• All delayed predicate

• Mapping a pointwise function

16

Non-decreasing steps

• We can define duplicate

• But not every-other

• Running out of ticks

• Can be defined with clocks, however

17

Vs coinduction

• Coinductive mechanisms are more liberal

• Productivity checker is purely syntactic

• Spend a few hours on a proof, get shot down

• Guarded constructions are type-directed

18

Fixed point definition

• We can define streams as a fixed point in the universe

• Have to manually encode unrollings and constructors

• All the properties still hold

19

Folds and friends

• We can define other familiar functions

• foldr, scan, zipWith, interleave

• Numerical streams

20

Co-lists and left folds

• Co-lists can be empty

• Same operations

• Left fold is now possible but is partial

• Need a new datatype to express partiality

21

Partiality monad

• Many names: L(ift), Event, Delay

• Essentially an arbitrary (even infinite) sequence

of ▹'s

•

•

• Reassociating nested delays → a monad
•

now : A → Part A

later : ▹ Part A → Part A

▹▹▹(▹▹A) = ▹▹▹▹▹A

22

Indexed partiality monad

• Can be made more graphic by indexing with steps
•

•

• runs "in parallel"
•

• runs sequentially

• Encoding applicative via bind changes complexity!

mapᵈ : (A → B)

 → Delayed A n → Delayed B n

apᵈ : Delayed (A → B) m

 → Delayed A n

 → Delayed B (max m n)

>>=ᵈ : Delayed A m

 → (A → Delayed B n)

 → Delayed B (m + n)

23

Left fold on Colists

• Now we can encode the left fold
•

• The result is delayed by a number of steps equal to

the co-list length

foldlˡ : (B → A → B)

 → B → Colist A → Part B

24

Co-naturals

• "Delayed" unary numbers ℕ∞

• Equal to Part ⊤

• Useful for doing synthetic topology

• Sequential spaces

25

Bird's algorithm

• aka replaceMin

• Bird, [1984] "Using circular programs to

eliminate multiple traversals of data"

• later generalized to MonadFix in Haskell

• given a binary tree with data in leaves, replaces

all values with a minimum in a single pass

26

Bird's algorithm

Classical form is somewhat weird

replaceMin :: Tree -> Tree

replaceMin t =

 let (r, m) = rmb (t, m) in r

 where

 rmb :: (Tree, Int) -> (Tree, Int)

 rmb (Leaf x, y) = (Leaf y, x)

 rmb (Node l r, y) =

 let (l',ml) = rmb (l, y)

 (r',mr) = rmb (r, y)

 in

 (Node l' r', min ml mr)

27

Guarded decomposition

• We can decompose this in two temporal phases

• Compute the minimum and construct the

thunk

• Then run the thunk

• Uses the feedback combinator
•

• Inserts intermediate data between steps

• Cannot run the thunk without clocks

feedback : (▹ A → B × A) → B

feedback f = fst (fix (f ∘ ▹map snd))

28

Verification

• We can also verify the algorithm

• Result has the same shape

• All the elements are equal to the minimum

• Can be done with usual induction

29

Strict positivity

• Guarded recursion has two general areas of

application:

1. Working with potentially infinite data structures

2. Working with non-strictly-positive recursive types

• Strictly positive type appears to the left of 0 arrows

• Another syntactic approximation

30

Strict positivity

• Strictly positive type appears to the left of 0 arrows

• Another syntactic approximation

• Positive type appears in even positions

• Negative type appears in odd positions

data Expr : Type -> Type where

 Foo : ((Expr a -> Expr a) -> Expr b) -> Expr (a -> b)

 ^^^^^^-------------------------- positive occurrence

 ^^^^^^--------------- negative occurrence

 ^^^^^^---- strictly positive occurrence

31

Guarded relaxation

• We can build a finer-grained approximation by

guarding all positions

• Again, it must be encoded manually as a fixed point in

the universe

• The positivity checker is still there

• Safe, but the price is potentially partial outputs

data Expr : Type -> Type where

 Foo : ((▹ Expr a -> ▹ Expr a) -> ▹ Expr b) -> Expr (a -> b)

32

Rec datatype

•

• Reified recursion

• Rec ⊥ can be shown uninhabited

• Rec ⊤ is isomorphic to ⊤

data Rec : 𝒰 → 𝒰 where

 MkRec : (▹ Rec A → A) → Rec A

33

Breadth-first traversal

• Another form of a binary tree, data on both leaves

and nodes

• Compute a breadth-first traversal

34

Hoffman's algorithm

• Typically done with queues

• Hoffman invented a purely functional continuation-

based algorithm in 1993

• Requires a intermediate positive datatype
•

data Rou (A : 𝒰) : 𝒰 where

 overR : Rou A

 nextR : ((Rou A → List A) → List A)

 → Rou A

35

Guarded version

• As we're using a guarded approximation, we're forced

to use co-lists

• Also, we need to provide all the infrastructure

manually

• Un/rollings, constructors, recursor

• The algorithm recursively builds up a routine from a

tree

• And uses guarded recursion to extract the value

• Initialized with an empty routine

36

Other uses

• The ability to work with non-strictly positive types is quite

useful to do semantic work

• Logical relations are typically negative types
•

• The right hand side is delayed by N+1 steps

• Can construct denotational semantics for general

recursion (PCF)

data R : Ty → Term → 𝒰 where

 R𝟙 : ∅ ⊢ t ⦂ 𝟙

 → halts t

 → R 𝟙 t

 R⇒ : ∅ ⊢ t ⦂ (T₁ ⇒ T₂)

 → halts t

 → (∀ s → ▹ R T₁ s → Part (▹ R T₂ (t · s)))

 → R (T₁ ⇒ T₂) t

37

Conclusion

• A principled way to work with non-termination

• A common theme is overcoming syntactic

approximations

• Thunks, streams, partiality

• Non-strictly positive datatypes

• Synthetic topology and domain theory

• Concurrency models (quotienting & cubical gizmos)

38

Working repos

•

•

https://github.com/clayrat/guarded-cm/

https://github.com/clayrat/logrel-guarded/

39

https://github.com/clayrat/guarded-cm/
https://github.com/clayrat/logrel-guarded/
https://github.com/clayrat/guarded-cm/
https://github.com/clayrat/logrel-guarded/

Literature
•

•

•

•

•

•

•

•

Nakano, [2000] "A modality for recursion"

Artemov, Beklemishev, [2004] "Provability logic"

https://agda.readthedocs.io/en/latest/language/guarded.html

Atkey, McBride, [2013] "Productive Coprogramming with Guarded

Recursion"

Bird, [1984] "Using circular programs to eliminate multiple traversals

of data"

Berger, Matthes, Setzer, [2019] "Martin Hofmann's Case for Non-

Strictly Positive Data Types"

Clouston, Bizjak, Grathwohl, Birkedal, [2016] "The guarded lambda-

calculus: Programming and reasoning with guarded recursion for

coinductive types"

Paviotti, Mogelberg, Birkedal, [2015] "A model of PCF in Guarded Type

Theory"

40

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7573
https://sartemov.ws.gc.cuny.edu/files/2012/10/Artemov-Beklemishev.-Provability-logic.pdf
https://agda.readthedocs.io/en/latest/language/guarded.html
https://bentnib.org/productive.pdf
https://bentnib.org/productive.pdf
https://gwern.net/doc/cs/haskell/1984-bird.pdf
https://gwern.net/doc/cs/haskell/1984-bird.pdf
https://hal.science/hal-02365814
https://hal.science/hal-02365814
https://arxiv.org/abs/1606.09455
https://arxiv.org/abs/1606.09455
https://arxiv.org/abs/1606.09455
https://www.itu.dk/people/mogel/papers/PCF-mfps2015.pdf
https://www.itu.dk/people/mogel/papers/PCF-mfps2015.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7573
https://sartemov.ws.gc.cuny.edu/files/2012/10/Artemov-Beklemishev.-Provability-logic.pdf
https://agda.readthedocs.io/en/latest/language/guarded.html
https://bentnib.org/productive.pdf
https://bentnib.org/productive.pdf
https://gwern.net/doc/cs/haskell/1984-bird.pdf
https://gwern.net/doc/cs/haskell/1984-bird.pdf
https://hal.science/hal-02365814
https://hal.science/hal-02365814
https://arxiv.org/abs/1606.09455
https://arxiv.org/abs/1606.09455
https://arxiv.org/abs/1606.09455
https://www.itu.dk/people/mogel/papers/PCF-mfps2015.pdf
https://www.itu.dk/people/mogel/papers/PCF-mfps2015.pdf

Contacts

•

•

•

•

http://clayrat.github.io/

https://software.imdea.org/~aliaksandr.hryzlou/

https://www.linkedin.com/in/alexgryzlov/

https://twitter.com/clayrat/

41

http://clayrat.github.io/
https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://twitter.com/clayrat/
http://clayrat.github.io/
https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://twitter.com/clayrat/

