
Fearless programming
and reasoning with

infinities
Alexander Gryzlov

Research programmer
IMDEA Software Institute

Functional Programming Madrid
09/04/2024

1

Agenda

Totality, partiality and fixed points
Infinite data
Interfaces and objects
Automata
The road ahead

2

Part 1

Purely functional programming
= programming and reasoning with referentially

transparent higher-order functions

Having effects explicit simplifies reasoning

Totality, partiality and fixed points

3

Purity

Very useful for reasoning about the intention and
correctness

Types classify well-behaved programs, but we inevitably
lose some programs

So there's a quest to regain expressivity by making type
system more powerful

A crucial step is to unify types and programs

4

Totality

Pushing type-based reasoning further gives
dependent types

We can program the type-checker itself
data Vec (A : 𝒰) : ℕ → 𝒰 where
 [] : Vec A zero
 ∷ : A → Vec A n → Vec A (suc n)

data Format = Number Format
 | Str Format
 | Lit String Format
 | End

PrintfType : Format → 𝒰
PrintfType (Number fmt) = (i : Int) → PrintfType fmt
PrintfType (Str fmt) = (str : String) → PrintfType fmt
PrintfType (Lit str fmt) = PrintfType fmt
PrintfType End = String

printfFmt : (fmt : Format) → (acc : String) → PrintfType fmt
printfFmt (Number fmt) acc = λ i → printfFmt fmt (acc ++ show i)
printfFmt (Str fmt) acc = λ str → printfFmt fmt (acc ++ str)
printfFmt (Lit lit fmt) acc = printfFmt fmt (acc ++ lit)
printfFmt End acc = acc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

5

Totality
This however means that purity is not enough
Functions have to be total: defined everywhere

Otherwise the typechecking crashes or fails
Hanging terms = inconsistent

{-# TERMINATING #-}
void : ⊥
void = void

oops : 2 + 2 ＝ 5
oops = absurd void

6

Semantics

mathematical function: idealized pairing of input to
outputs such that the output is uniquely determined
by input (denotational)
algorithmic function: a tree of instructions for
manipulating abstract automata
denotational view mostly ignores time, however
operational view is typically quite low-level

7

Safety and liveness

Correctness properties typically split into

safety (nothing bad ever happens)
liveness (something good eventually happens)

Totality also has two aspects:

defined input (no crashing)
producing output (no hanging)

8

Safety reasoning

Partial functions violating safety = some arguments are
not handled

Typically modelled with Maybe/Either

Violation of liveness = non-termination
The operational/temporal aspect (e.g. complexity) is

generally hard to reason with in FP
Essentially, functions can drop and duplicate data in

unrestricted fashion

9

Non-termination

Temporal aspects are typically "invisible"
How to model endless computation?

Total programming usually restricts to terminating
functions

Too narrow, cannot reason about interactive programs
Need to model control flow in the type system

10

Non-termination hacks
We can try adding hacks:

1. construct individual terminating steps
2. make a small unsafe function that spins the steps
3. alternatively, add number of steps and then unsafely

generate an infinite number

data Fuel = Dry | More Fuel

limit : ℕ → Fuel
limit zero = Dry
limit (suc n) = More (limit n)

{-# TERMINATING #-}
forever : Fuel
forever = More forever

Not very satisfactory, we should have a formal solution

11

Type-level time

A natural way of reasoning about time is to split
it into steps/ticks on some global clock

The flow of time should be unidirectional

...

12

A thunk calculus

Let us introduce a special type constructor ▷
▷A is "A, but available one step later"
Essentially a type-level thunk () ⇒ A
Can also be thought of as staging
The program generates a new program that
runs after the first one and so on

...
▷ ▷▷ ▷▷▷

13

Structure of later

It's an applicative functor
(will denote ap by ⊛)

next : A → ▷A
ap : ▷(A → B) → ▷A → ▷B

14

Functorial structure

We can derive a functorial action (will denote map by ⍉)
All the laws hold definitionally (by symbolic computation)

map : (A → B) → ▹ A → ▹ B
map f a▹ = next f ⊛ a▹

15

Not a monad
There is no monadic structure

This ensures that the temporal structure is preserved
flatten : ▹ ▹ A → ▹ A

▷

For an arbitrary type there's also typically no
▹ A → A

16

Guarded recursion

We can schedule computations, what now?
Terminating → Productive
Every recursive call is "guarded" by a thunk, giving back
control
Infinite / streaming computations, servers, OSs

...
▷ ▷▷ ▷▷▷

17

Guarded recursion

A form of Y-combinator
Postulated definition, unfolding made propositional
Can be safely erased down to the usual fixpoint

fix: (▹ A → A) → A

18

Ticked type theory

We'll use Agda proof assistant for interactive examples
Guarded modality is encoded as a function from Ticks
of a modal type 𝕋
A proof of an elapsed time step
Can encode next, ap and map

19

Ticked cubical type theory

Technically we're also using the cubical mode of Agda
No higher equalities / quotients / univalence
Equality is encoded as a function from a continuous
interval 𝕀
The interval is allowed to "time-travel"
We can reason about the future in the present

20

Logical justification

A flavour of provability modality
1933 - Gödel's analysis of S4
1950s - Löb's axiom: □(□A → A) → □A
We're using the strong Löb's version: (□A → A) → A

1960s - GL system
1970s - intuitionistic systems, fixed points
2000s - links to formal semantics and category theory

21

Nakano's approximation

Nakano, [2000] "A modality for recursion"
Initially denoted ⏺
Continued by many authors, most notably:
Atkey-McBride'2013
A series of papers by Birkedal and coauthors in 2010s
Nowadays symbolized by a right triangle ▷
Viewed as a special type constructor in a type system

22

Programming with ▷

So, to recap we have essentially 4 new constructs:

▷, next, ap/⊛, fix

(+ map/⍉ and some proof machinery)

What can we write?

23

Part 2

Which infinite types make sense?

Infinite data

24

Fitting the fix

Previously, I've said that for an arbitrary type there
typically is no

However, that is the type of function we need:

We can construct such types with ▹

▹ A → A

fix: (▹ A → A) → A

25

Partiality effect

Recall the motivation of having a non-termination effect
We can express it with two constructors + a guard
Many names: L(ift), Event, Delay

data Part (A : 𝒰) : 𝒰 where
 now : A → Part A
 later : ▹ Part A → Part A

...

26

Partiality functor

Mapping a function = waiting until the end and applying it

map-body : (A → B)
 → ▹ (Part A → Part B)
 → Part A → Part B

map-body f m▹ (now a) = now (f a)
map-body f m▹ (later p) = later (m▹ ⊛ p)

map : (A → B) → Part A → Part B
map f = fix (map-body f)

27

Partiality applicative

Unwind both structures "in parallel"

pure : A → Part A
pure = now

ap-body : ▹ (Part (A → B) → Part A → Part B)
 → Part (A → B) → Part A → Part B
ap-body a▹ (now f) (now x) = now (f x)
ap-body a▹ (now f) (later x▹) = later (a▹ ⊛ next (now f) ⊛ x▹)
ap-body a▹ (later f▹) (now x) = later (a▹ ⊛ f▹ ⊛ next (now x))
ap-body a▹ (later f▹) (later x▹) = later (a▹ ⊛ f▹ ⊛ x▹)

ap : Part (A → B) → Part A → Part B
ap = fix ap-body

1
2
3
4
5
6
7
8
9

10
11
12

28

Partiality monad

Essentially an arbitrary sequence of nested ▹'s
Reassociating → a monad
▹▹▹(▹▹A) = ▹▹▹▹▹A

flatten-body : ▹ (Part (Part A) → Part A)
 → Part (Part A) → Part A
flatten-body f▹ (now p) = p
flatten-body f▹ (later p▹) = later (f▹ ⊛ p▹)

flatten : Part (Part A) → Part A
flatten = fix flatten-body

29

Indexed partiality monad
Can be made more graphic by indexing with steps

mapᵈ : (A → B) → Delayed A n → Delayed B n

apᵈ : Delayed (A → B) m
 → Delayed A n
 → Delayed B (max m n)

runs sequentially
Encoding applicative via bind changes complexity!

>>=ᵈ : Delayed A m
 → (A → Delayed B n)
 → Delayed B (m + n)

runs "in parallel"

30

Partiality effect
never : Part ⊥
never = fix later

collatz-body : ▹ (ℕ → Part ⊤) → ℕ → Part ⊤
collatz-body c▹ 1 = now tt
collatz-body c▹ n =
 if even n then later (c▹ ⊛ next (n ÷2))
 else later (c▹ ⊛ next (suc (3 · n)))

collatz : ℕ → Part ⊤
collatz = fix collatz-body

1
2
3
4
5
6
7
8
9
10
11

Wraps potentially non-terminating
computations

31

Conaturals

Unary numbers extended with numerical infinity
≅ Part⊤

data ℕ∞ : 𝒰 where
 ze : ℕ∞
 su : ▹ ℕ∞ → ℕ∞

infty : ℕ∞
infty = fix su

+-body : ▹ (ℕ∞ → ℕ∞ → ℕ∞) → ℕ∞ → ℕ∞ → ℕ∞
+-body a▹ ze ze = ze
+-body a▹ x@(su _) ze = x
+-body a▹ ze y@(su _) = y
+-body a▹ (su x▹) (su y▹) =
 su (next (su (a▹ ⊛ x▹ ⊛ y▹)))

+ : ℕ∞ → ℕ∞ → ℕ∞
+ = fix +-body

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

32

Conatural subtraction

∸-body : ▹ (ℕ∞ → ℕ∞ → Part ℕ∞) → ℕ∞ → ℕ∞ → Part ℕ∞
∸-body s▹ ze _ = now ze
∸-body s▹ x@(su _) ze = now x
∸-body s▹ (su x▹) (su y▹) = later (s▹ ⊛ x▹ ⊛ y▹)

∸ : ℕ∞ → ℕ∞ → Part ℕ∞
∸ = fix ∸-body

∸-infty : infty ∸ᶜ infty ＝ never
...

(Saturating) subtraction is partial:
∞ ∸ ∞ never terminates

33

Co/free monad

Partiality is just an instantiation of the free monad with
the ▷ functor

Free monad is an F-branching tree with data on the leaves
Cofree comonad is a tree with data at the branches
What do we get by instantiating Cofree with ▷ ?

data Free (F : 𝒰 → 𝒰) (A : 𝒰) : 𝒰 where
 Pure : A → Free F A
 Roll : F (Free F A) → Free F A

data Cofree (F : 𝒰 → 𝒰) (A : 𝒰) : 𝒰 where
 Cof : A → F (Cofree F A) → Cofree F A

34

Streams

Another classical infinite structure
An inductive list with a delayed tail and no empty case
A lazy linear producer of values

data Stream (A : 𝒰) : 𝒰 where
 cons : A → ▹ Stream A → Stream A

...

35

Stream functions
headˢ : Stream A → A
headˢ (cons x _) = x

tail▹ˢ : Stream A → ▹ Stream A
tail▹ˢ (cons _ xs▹) = xs▹

repeatˢ : A → Stream A
repeatˢ a = fix (cons a)

mapˢ-body : (A → B)
 → ▹ (Stream A → Stream B)
 → Stream A → Stream B
mapˢ-body f m▹ as = cons (f (headˢ as)) (m▹ ⊛ (tail▹ˢ as))

mapˢ : (A → B) → Stream A → Stream B
mapˢ f = fix (mapˢ-body f)

natsˢ-body : ▹ Stream ℕ → Stream ℕ
natsˢ-body n▹ = cons 0 (mapˢ suc ⍉ n▹)

natsˢ : Stream ℕ
natsˢ = fix natsˢ-body

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

36

Stream comonad

extract = head

duplicate = tails

extractˢ : Stream A → A
extractˢ = headˢ

duplicateˢ-body : ▹ (Stream A → Stream (Stream A))
 → Stream A → Stream (Stream A)
duplicateˢ-body d▹ s@(cons _ t▹) = cons s (d▹ ⊛ t▹)

duplicateˢ : Stream A → Stream (Stream A)
duplicateˢ = fix duplicateˢ-body

37

...

...

...

...

...

Causality

We can define stutter but not everyother
Violates casualty
(can be defined with clocks, however)

stutter : Stream A → Stream A
stutter = fix λ d▹ s →
 cons (headˢ s) (next (cons (headˢ s) (d▹ ⊛ tail▹ˢ s)))

-- everyother : Stream A → Stream A
-- everyother = fix λ e▹ s →
-- cons (headˢ s) (e▹ ⊛ tail▹ˢ (tail▹ˢ s {!!}))

...

38

Folds and numbers
We can define other familiar functions
foldr, scan, zipWith, interleave
numerical streams

fibˢ-body : ▹ Stream ℕ → Stream ℕ
fibˢ-body f▹ =
 cons 0 ((λ s → cons 1 $ (zipWithˢ _+_ s) ⍉ (tail▹ˢ s)) ⍉ f▹)

fibˢ : Stream ℕ
fibˢ = fix fibˢ-body

primesˢ-body : ▹ Stream ℕ → Stream ℕ
primesˢ-body p▹ = cons 2 ((mapˢ suc ∘ scanl1ˢ _·_) ⍉ p▹)

primesˢ : Stream ℕ
primesˢ = fix primesˢ-body

1
2
3
4
5
6
7
8
9

10
11
12

39

Part 3

Let's look at the definition of the stream again

Objects and interfaces

A datatype with a single constructor is essentially
a record

data Stream (A : 𝒰) : 𝒰 where
 cons : A → ▹ Stream A → Stream A

40

Iterator

We can treat the stream as an iterator
object with two methods:

1. reading the head value
2. advancing by one step

record Stream (A : 𝒰) : 𝒰 where
 constructor cons
 field
 hd : A
 tl▹ : ▹ Stream A

41

Branching iterator
Can be generalized to an infinite binary tree

data Tree∞ (A : 𝒰) : 𝒰 where
 node : A → ▹ Tree∞ A → ▹ Tree∞ A
 → Tree∞ A

record Tree∞ (A : 𝒰) : 𝒰 where
 constructor node
 field
 val : A
 l▹ : ▹ Tree∞ A
 r▹ : ▹ Tree∞ A

...

42

Branching iterator
Or a rose tree with arbitrary branching

data RTree (A : 𝒰) : 𝒰 where
 rnode : A → List (▹ RTree A) → RTree A

record RTree (A : 𝒰) : 𝒰 where
 constructor rnode
 field
 val : A
 ch▹ : List (▹ RTree A)

...
43

Terminating iterators
Multiple constructors makes this harder

data Colist (A : 𝒰) : 𝒰 where
 cnil : Colist A
 ccons : A → ▹ Colist A → Colist A

record Colist0 (A : 𝒰) : 𝒰 where
 constructor ccons0
 field
 hd : Maybe A
 tl▹ : ▹ Colist0 A

record Colist1 (A : 𝒰) : 𝒰 where
 constructor ccons1
 field
 hd : A
 emp? : Bool
 tl▹ : ▹ Colist1 A

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

44

Set interface
How would we represent an infinite set of ℕ?

(a finite set is usually some search structure RedBlackTree ℕ)

Typically via a function ℕ → Bool
We can also use Stream Bool

Generally, Stream A ≅ ℕ → A
Tabulation of a function

However, this is not very efficient

...
1 2 310

45

Set interface
Instead, we can encode a set interface as

a recursive guarded record

(actual implementation a bit more technical)

record Setℕ : 𝒰 where
 constructor mkSet
 field
 emp? : Bool
 has? : ℕ → Bool
 ins : ℕ → ▹ Setℕ
 uni : ▹ Setℕ → Part Setℕ

46

Strict positivity

Guarded recursion has two general areas of
application:

1. Working with potentially infinite data structures
2. Encoding non-strictly-positive recursive types

Strictly positive type appears to the left of 0 arrows
A syntactic approximation of monotonicity

47

Strict positivity

Strictly positive type appears to the left of 0 arrows
Another syntactic approximation
Positive type appears in even positions
Negative type appears in odd positions

data Expr : 𝒰 → 𝒰 where
 Foo : ((Expr a → Expr a) → Expr b) → Expr (a → b)
 ^^^^^^----------------------- positive occurrence
 ^^^^^^-------------- negative occurrence
 ^^^^^^---- strictly positive occurrence

48

A finite set object
finiteSet-body : ▹ (List ℕ → Setℕ) → List ℕ → Setℕ
finiteSet-body f▹ l =
 mkSet (empty? l)
 (λ n → elem? n l)
 (λ n → f▹ ⊛ next (n ∷ l))
 (λ x▹ → later ((λ x →
 foldrP (λ n z →
 later (now ⍉ (z .ins n))) x l) ⍉ x▹))

finiteSet : List ℕ → Setℕ
finiteSet = fix finiteSet-body

1
2
3
4
5
6
7
8
9

10
11

Carries around the search structure (here a List)

49

An infinite set object
evensUnion-body : ▹ (Setℕ → Setℕ) → Setℕ → Setℕ
evensUnion-body e▹ s =
 mkSet false
 (λ n → even n or s .has? n)
 (λ n → e▹ ⊛ s .ins n)
 (λ x▹ → later ((λ f →
 mapᵖ f (s .uni x▹)) ⍉ e▹))

evensUnion : Setℕ → Setℕ
evensUnion = fix evensUnion-body

1
2
3
4
5
6
7
8
9
10

Delegates to the parameter

50

Objects with IO
This idea can be extended to state and effects
Encode IO as a form of a partiality monad and

abstract over methods
record IOInt : 𝒰 (ℓsuc 0ℓ) where
 field
 Command : 𝒰
 Response : Command → 𝒰

data IO (I : IOInt) (A : 𝒰) : 𝒰 where
 bnd : (c : Command I) (f : Response I c → ▹ IO I A) → IO I A
 ret : (a : A) → IO I A

record Interface : 𝒰 (ℓsuc 0ℓ) where
 field
 Method : 𝒰
 Result : Method → 𝒰

record IOObj (Io : IOInt) (I : Interface) : 𝒰 where
 field
 mth : (m : Method I) → IO Io (Result I m × IOObj Io I)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

51

Part 4

Let's go back to the idea of function tabulation
Stream A ≅ ℕ → A

What is the infinite tree isomorphic to?

Automata

data Tree∞ (A : 𝒰) : 𝒰 where
 node : A → ▹ Tree∞ A → ▹ Tree∞ A
 → Tree∞ A

52

Word consumers
Tree∞ A ≅ ℕ₂ → A

(the type of binary numbers)
There's general construction to tabulate

T → A into some F A

where the structure of F mirrors that of T

...

1

10 11

101

53

100
110 111

Tries

We can think of structures as infinite tries whose
branching factor is determined by T

...

54

Word automata

This idea can be generalized even further, to
tabulated polymorphic functions:

data Stream (A : 𝒰) : 𝒰 where
 cons : A → (⊤ → ▹ Stream A) → Stream A

data Tree∞ (A : 𝒰) : 𝒰 where
 cons : A → (Bool → ▹ Tree∞ A) → Tree∞ A

data Moore (X A : 𝒰) : 𝒰 where
 mre : A → (X → ▹ Moore X A) → Moore X A

55

Word automata

Moore X A ≅ List X → A

Deterministic Moore automaton, common special case is
Moore X Bool ≅ List X → Bool
which is typically called a recognizer

data Moore (X A : 𝒰) : 𝒰 where
 mre : A → (X → ▹ Moore X A) → Moore X A

56

Automata operations

pure : B → Moore A B
pure b = fix (pure-body b)

map : (B → C)
 → Moore A B → Moore A C
...

ap : Moore A (B → C) → Moore A B → Moore A C
..

zipWith : (B → C → D)
 → Moore A B → Moore A C → gMoore A D
zipWith f = ap ∘ map f

cat : Moore A B → Moore B C → Moore A C
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

57

Regular expressions
Lang : 𝒰 → 𝒰
Lang A = Moore A Bool

∅ : Lang A
∅ = pure false

ε : Lang A
ε = mre true λ _ → ∅

char : A → Lang A
char a = Mre false λ x →
 if ⌊ x ≟ a ⌋ then ε else ∅

compl : Lang A → Lang A
compl = map not

⋃ : Lang A → Lang A → Lang A
⋃ = zipWith _or_

⋂ : Lang A → Lang A → Lang A
⋂ = zipWith _and_

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

58

Mealy automata

data Mealy (X A : 𝒰) : 𝒰 where
 mly : (X → A × ▹ Mealy X A) → Mealy X A

data Moore (X A : 𝒰) : 𝒰 where
 mre : A → (X → ▹ Moore X A) → Moore X A

Mealy X A ≅ Stream X → Stream A
transducer automaton

59

Resumptions

data Res (I O A : 𝒰) : 𝒰 where
 ret : A → Res I O A
 cont : (I → O × ▹ Res I O A) → Res I O A

A Mealy automaton that possibly terminates
a combination of a partiality and state monad

60

Coroutines

Passing control back and forth via thunks is
conceptually programming with coroutines

Can be compiled into patterns of communication

between consumer and producer automata
data Consume (A B : 𝒰) : 𝒰 where
 end : B → Consume A B
 more : (A → ▹ Consume A B) → Consume A B

pipe-body : ▹ (Stream A → Consume A B → Part B)
 → Stream A → Consume A B → Part B
pipe-body p▹ _ (end x) = now x
pipe-body p▹ (cons h t▹) (more f▹) = later (p▹ ⊛ t▹ ⊛ f▹ h)

pipe : Stream A → Consume A B → Part B
pipe = fix pipe-body

1
2
3
4
5
6
7
8
9

10
11

61

Part 5

Where to go next?

The road ahead

62

Clocked type theory

We can work "under" thunks but not remove them
Delayedness never decreases
Weaker than proper coinduction
Can be extended by a constant ☐ modality or clock
variables to allow forcing "completed" thinks
force : (∀ κ → ▹ κ (A κ)) → ∀ κ → A κ
Controlled violation of causality
E.g. we can write everyother function on streams

63

Bird's algorithm

aka replaceMin
later generalized to value recursion (MonadFix) in
Haskell
given a binary tree with data in leaves, replaces all values
with a minimum in a single pass

64

Bird's algorithm
Classical form is somewhat weird

replaceMin :: Tree -> Tree

replaceMin t =
 let (r, m) = rmb (t, m) in r
 where
 rmb :: (Tree, Int) -> (Tree, Int)
 rmb (Leaf x, y) = (Leaf y, x)
 rmb (Node l r, y) =
 let (l',ml) = rmb (l, y)
 (r',mr) = rmb (r, y)
 in
 (Node l' r', min ml mr)

1
2
3
4
5
6
7
8
9
10
11
12

65

Guarded decomposition
We can decompose this in two temporal phases
Compute the minimum and construct the
thunk
Then run the thunk
Uses the feedback combinator

Inserts intermediate data between steps
Cannot run the thunk without clocks

feedback : (▹ A → B × A) → B
feedback f = fst (fix (f ∘ ▹map snd))

66

Continuations

We can reason about control-flow based algorithms
Harper's algorithm for matching on regexps with
continuations
Hofmann's algorithm for tree BFS

67

Hoffman's algorithm

Typically done with queues
Hoffman invented a purely functional continuation-based
algorithm in 1993
Requires a intermediate (non-strictly) positive datatype

data RouF (A : 𝒰) (R▹ : ▹ 𝒰) : 𝒰 where
 overRF : RouF A R▹
 nextRF : ((▸ R▹ → ▹ Colist A) → Colist A) → RouF A R▹

Rou : 𝒰 → 𝒰
Rou A = fix (RouF A)

68

Breadth-first traversal

Another form of a binary tree, data on both leaves
and nodes
Compute a breadth-first traversal

69

Stream calculus

exact real numbers, series
stream differential equations

70

Search algorithms

sequential topology
Tychonoff's theorem

→c-searchable' : (ds : is-discrete X) → searchable X
 → ((p , d) : d-predicate (Stream X))
 → (δ : ℕ) → δ is-u-mod-of p on (closenessˢ ds)
 → Σ[s₀ ꞉ Stream X] (Σ (Stream X) p → p s₀)

71

Vs coinduction

Coinductive mechanisms are more liberal
Productivity checker is purely syntactic
Spend a few hours on a proof, get shot down
Guarded constructions are type-directed

72

Conclusion

A principled way to work with non-termination
A common theme is overcoming syntactic approximations
Thunks, streams, partiality
Non-strictly positive datatypes
Synthetic topology and domain theory
Concurrency models (quotienting & cubical gizmos)

73

Working repos

https://github.com/clayrat/guarded-cm
https://github.com/clayrat/guarded-termination
https://github.com/clayrat/guarded-objects
https://github.com/clayrat/guarded-automata
https://github.com/clayrat/guarded-search
https://github.com/clayrat/logrel-guarded

74

https://github.com/clayrat/guarded-cm/
https://github.com/clayrat/guarded-termination
https://github.com/clayrat/guarded-objects
https://github.com/clayrat/guarded-automata
https://github.com/clayrat/guarded-search
https://github.com/clayrat/logrel-guarded/

Literature
Nakano, [2000] "A modality for recursion"
Artemov, Beklemishev, [2004] "Provability logic"
https://agda.readthedocs.io/en/latest/language/guarded.html
Atkey, McBride, [2013] "Productive Coprogramming with Guarded
Recursion"
Bird, [1984] "Using circular programs to eliminate multiple traversals
of data"
Berger, Matthes, Setzer, [2019] "Martin Hofmann's Case for Non-
Strictly Positive Data Types"
Clouston, Bizjak, Grathwohl, Birkedal, [2016] "The guarded lambda-
calculus: Programming and reasoning with guarded recursion for
coinductive types"
Paviotti, Mogelberg, Birkedal, [2015] "A model of PCF in Guarded Type
Theory"

75

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7573
https://sartemov.ws.gc.cuny.edu/files/2012/10/Artemov-Beklemishev.-Provability-logic.pdf
https://agda.readthedocs.io/en/latest/language/guarded.html
https://bentnib.org/productive.pdf
https://bentnib.org/productive.pdf
https://gwern.net/doc/cs/haskell/1984-bird.pdf
https://gwern.net/doc/cs/haskell/1984-bird.pdf
https://hal.science/hal-02365814
https://hal.science/hal-02365814
https://arxiv.org/abs/1606.09455
https://arxiv.org/abs/1606.09455
https://arxiv.org/abs/1606.09455
https://www.itu.dk/people/mogel/papers/PCF-mfps2015.pdf
https://www.itu.dk/people/mogel/papers/PCF-mfps2015.pdf

Contacts

http://clayrat.github.io/
https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://twitter.com/clayrat/

76

http://clayrat.github.io/
https://software.imdea.org/~aliaksandr.hryzlou/
https://www.linkedin.com/in/alexgryzlov/
https://twitter.com/clayrat/

